<!DOCTYPE html><HTML lang="en"> <head><meta charset="utf-8"> <title>Zalta (Edward N.) - Gottlob Frege (Theo Todman's Book Collection - Paper Abstracts) </title> <link href="../../TheosStyle.css" rel="stylesheet" type="text/css"><link rel="shortcut icon" href="../../TT_ICO.png" /></head> <BODY> <CENTER> <div id="header"><HR><h1>Theo Todman's Web Page - Paper Abstracts</h1><HR></div><A name="Top"></A> <TABLE class = "Bridge" WIDTH=950> <tr><th><A HREF = "../../PaperSummaries/PaperSummary_00/PaperSummary_524.htm">Gottlob Frege</A></th></tr> <tr><th><A HREF = "../../Authors/Z/Author_Zalta (Edward N.).htm">Zalta (Edward N.)</a></th></tr> <tr><th>Source: Stanford Encyclopaedia of Philosophy,1995-2008</th></tr> <tr><th>Paper - Abstract</th></tr> </TABLE> </CENTER> <P><CENTER><TABLE class = "Bridge" WIDTH=600><tr><td><A HREF = "../../PaperSummaries/PaperSummary_00/PaperSummary_524.htm">Paper Summary</A></td><td><A HREF = "../../PaperSummaries/PaperSummary_00/PapersToNotes_524.htm">Notes Citing this Paper</A></td><td><A HREF="#ColourConventions">Text Colour-Conventions</a></td></tr></TABLE></CENTER></P> <hr><P><FONT COLOR = "0000FF"><U><U><A HREF="#On-Page_Link_P524_1">Author s Abstract</A></U><SUB>1</SUB><a name="On-Page_Return_P524_1"></A></U><FONT COLOR = "800080"><ol type="1"><li>Friedrich Ludwig Gottlob Frege (b. 1848, d. 1925) was a German mathematician, logician, and philosopher who worked at the University of Jena. </li><li>Frege essentially reconceived the discipline of logic by constructing a formal system which, in effect, constituted the first  predicate calculus . In this formal system, Frege developed an analysis of quantified statements and formalized the notion of a  proof in terms that are still accepted today. </li><li>Frege then demonstrated that one could use his system to resolve theoretical mathematical statements in terms of simpler logical and mathematical notions. One of the axioms that Frege later added to his system, in the attempt to derive significant parts of mathematics from logic, proved to be inconsistent. Nevertheless, his definitions (of the predecessor relation and of the concept of <I>natural number</I>) and methods (for deriving the axioms of number theory) constituted a significant advance. </li><li>To ground his views about the relationship of logic and mathematics, Frege conceived a comprehensive philosophy of language that many philosophers still find insightful. However, his lifelong project, of showing that mathematics was reducible to logic, was not successful. </li></ol></FONT><BR><u>Contents</u><FONT COLOR = "800080"><ol type="1"><li>Frege's Life</li><li>Frege's Logic and Philosophy of Mathematics<BR>&rarr; 2.1 The Basis of Frege's Term Logic and Predicate Calculus<BR>&rarr; 2.2 Complex Statements and Generality<BR>&rarr; 2.3 Proof and Definition<BR>&rarr; 2.4 Courses-of-Values, Extensions, and Proposed Mathematical Foundations<BR>&rarr; 2.5 The Analysis of Statements of Number<BR>&rarr; 2.6 Natural Numbers<BR>&rarr; 2.7 Frege's Conception of Logic</li><li>Frege's Philosophy of Language<BR>&rarr; 3.1 Frege's Puzzles<BR>&rarr; 3.2 Frege's Theory of Sense and Denotation</li><li>Bibliography<BR>&rarr; A. Primary Sources<BR>&rarr; B. Secondary Sources<BR>Other Internet Resources<BR>Related Entries</li></ol></FONT><hr><FONT COLOR = "0000FF"><B>Comment: </B><ul type="disc"><li>First published Thu Sep 14, 1995; substantive revision Fri Aug 1, 2008; see <a name="W284W"></a><A HREF = "https://plato.stanford.edu/archives/sum2011/entries/frege/" TARGET = "_top">Link</A>. </li><li>Substantive revision Sat Oct 29, 2016; see <a name="W6683W"></a><A HREF = "https://plato.stanford.edu/entries/frege/" TARGET = "_top">Link</A></li><li>Appraisal of <a name="1"></a><A HREF = "../../Authors/F/Author_Frege (Gottlob).htm">Gottlob Frege</A>. </li></ul><BR><BR><HR><BR><U><B>In-Page Footnotes</U></B><a name="On-Page_Link_P524_1"></A><BR><BR><U><A HREF="#On-Page_Return_P524_1"><B>Footnote 1</B></A></U>: <ul type="disc"><li>Taken from the 2008 version.</li></ul><FONT COLOR = "0000FF"><HR></P><a name="ColourConventions"></a><p><b>Text Colour Conventions (see <A HREF="../../Notes/Notes_10/Notes_1025.htm">disclaimer</a>)</b></p><OL TYPE="1"><LI><FONT COLOR = "0000FF">Blue</FONT>: Text by me; &copy; Theo Todman, 2018</li><LI><FONT COLOR = "800080">Mauve</FONT>: Text by correspondent(s) or other author(s); &copy; the author(s)</li></OL> <BR><HR><BR><CENTER> <TABLE class = "Bridge" WIDTH=950> <TR><TD WIDTH="30%">&copy; Theo Todman, June 2007 - August 2018.</TD> <TD WIDTH="40%">Please address any comments on this page to <A HREF="mailto:theo@theotodman.com">theo@theotodman.com</A>.</TD> <TD WIDTH="30%">File output: <time datetime="2018-08-02T05:34" pubdate>02/08/2018 05:34:03</time> <br><A HREF="../../Notes/Notes_10/Notes_1010.htm">Website Maintenance Dashboard</A></TD></TR> <TD WIDTH="30%"><A HREF="#Top">Return to Top of this Page</A></TD> <TD WIDTH="40%"><A HREF="../../Notes/Notes_11/Notes_1140.htm">Return to Theo Todman's Philosophy Page</A></TD> <TD WIDTH="30%"><A HREF="../../index.htm">Return to Theo Todman's Home Page</A></TD> </TR></TABLE></CENTER><HR> </BODY> </HTML>