<!DOCTYPE html><HTML lang="en"> <head><meta charset="utf-8"> <title>Cohen (L. Jonathan) - Laws, Coincidences and Relations Between Universals (Theo Todman's Book Collection - Paper Abstracts) </title> <link href="../../TheosStyle.css" rel="stylesheet" type="text/css"><link rel="shortcut icon" href="../../TT_ICO.png" /></head> <BODY> <CENTER> <div id="header"><HR><h1>Theo Todman's Web Page - Paper Abstracts</h1><HR></div><A name="Top"></A> <TABLE class = "Bridge" WIDTH=950> <tr><th><A HREF = "../../PaperSummaries/PaperSummary_02/PaperSummary_2755.htm">Laws, Coincidences and Relations Between Universals</A></th></tr> <tr><th><A HREF = "../../Authors/C/Author_Cohen (L. Jonathan).htm">Cohen (L. Jonathan)</a></th></tr> <tr><th>Source: Pettit, Sylvan & Norman - Metaphysics & Morality - Essays in Honour of J.J.C. Smart</th></tr> <tr><th>Paper - Abstract</th></tr> </TABLE> </CENTER> <P><CENTER><TABLE class = "Bridge" WIDTH=200><tr><td><A HREF = "../../PaperSummaries/PaperSummary_02/PaperSummary_2755.htm">Paper Summary</A></td></tr></TABLE></CENTER></P> <hr><P><FONT COLOR = "0000FF"><U>Philosophers Index Abstract</U><FONT COLOR = "800080"><ol type="1"><li>The problem is: how is the contrast between laws and coincidences possible? </li><li><a name="3"></a><A HREF = "../../Authors/T/Author_Tooley (Michael).htm">Michael Tooley</A>, <a name="4"></a><A HREF = "../../Authors/D/Author_Dretske (Fred).htm">Fred Dretske</A> and <a name="5"></a><A HREF = "../../Authors/A/Author_Armstrong (David).htm">David Armstrong</A> have proposed to resolve this problem by arguing that any statement of a natural law asserts a second-order relation between <a name="1"></a><A HREF="../../Notes/Notes_10/Notes_1008.htm">universals</A><SUP>1</SUP>. </li><li>But this proposal fails because, if laws are second-order relations between <a name="2"></a><A HREF="../../Notes/Notes_10/Notes_1008.htm">universals</A><SUP>2</SUP>, coincidences must also be so. </li><li>An epistemological approach is more fruitful than a semantical one here. It turns out that natural laws stand in relation to eliminative or variative induction in very much the same way as accidentally true generalisations stand in relation to enumerative induction.</li></ol></FONT><FONT COLOR = "0000FF"><HR></P><a name="ColourConventions"></a><p><b>Text Colour Conventions (see <A HREF="../../Notes/Notes_10/Notes_1025.htm">disclaimer</a>)</b></p><OL TYPE="1"><LI><FONT COLOR = "0000FF">Blue</FONT>: Text by me; &copy; Theo Todman, 2018</li><LI><FONT COLOR = "800080">Mauve</FONT>: Text by correspondent(s) or other author(s); &copy; the author(s)</li></OL> <BR><HR><BR><CENTER> <TABLE class = "Bridge" WIDTH=950> <TR><TD WIDTH="30%">&copy; Theo Todman, June 2007 - August 2018.</TD> <TD WIDTH="40%">Please address any comments on this page to <A HREF="mailto:theo@theotodman.com">theo@theotodman.com</A>.</TD> <TD WIDTH="30%">File output: <time datetime="2018-08-02T06:00" pubdate>02/08/2018 06:00:09</time> <br><A HREF="../../Notes/Notes_10/Notes_1010.htm">Website Maintenance Dashboard</A></TD></TR> <TD WIDTH="30%"><A HREF="#Top">Return to Top of this Page</A></TD> <TD WIDTH="40%"><A HREF="../../Notes/Notes_11/Notes_1140.htm">Return to Theo Todman's Philosophy Page</A></TD> <TD WIDTH="30%"><A HREF="../../index.htm">Return to Theo Todman's Home Page</A></TD> </TR></TABLE></CENTER><HR> </BODY> </HTML>