What constitutes the numerical diversity of mathematical objects?
MacBride (Fraser)
Source: Analysis 66, January 2006, pp. 63-69(7)
Paper - Abstract

Paper StatisticsDisclaimer

Author's Abstract

    The article focuses on the composition of different versions of structuralism in mathematical objects. According to the article, different versions of structuralism correspond to different interpretations of the relevant notion of form implicit in mathematical practice. The idea of structuralism states that mathematical objects are positions in structural universals1, constituted by the relations they bear to the other positions in the structures to which they belong.

Text Colour Conventions (see disclaimer)

  1. Blue: Text by me; © Theo Todman, 2019
  2. Mauve: Text by correspondent(s) or other author(s); © the author(s)

© Theo Todman, June 2007 - Jan 2019. Please address any comments on this page to theo@theotodman.com. File output:
Website Maintenance Dashboard
Return to Top of this Page Return to Theo Todman's Philosophy Page Return to Theo Todman's Home Page