<!DOCTYPE html><HTML lang="en"> <head><meta charset="utf-8"> <title>McGinn (Colin) - Necessity (Theo Todman's Book Collection - Paper Abstracts) </title> <link href="../../TheosStyle.css" rel="stylesheet" type="text/css"><link rel="shortcut icon" href="../../TT_ICO.png" /></head> <BODY> <CENTER> <div id="header"><HR><h1>Theo Todman's Web Page - Paper Abstracts</h1><HR></div><A name="Top"></A> <TABLE class = "Bridge" WIDTH=950> <tr><th><A HREF = "../../PaperSummaries/PaperSummary_06/PaperSummary_6759.htm">Necessity</A></th></tr> <tr><th><A HREF = "../../Authors/M/Author_McGinn (Colin).htm">McGinn (Colin)</a></th></tr> <tr><th>Source: McGinn - Logical Properties, 2000, Chapter 4</th></tr> <tr><th>Paper - Abstract</th></tr> </TABLE> </CENTER> <P><CENTER><TABLE class = "Bridge" WIDTH=400><tr><td><A HREF = "../../PaperSummaries/PaperSummary_06/PaperSummary_6759.htm">Paper Summary</A></td><td><A HREF="#ColourConventions">Text Colour-Conventions</a></td></tr></TABLE></CENTER></P> <hr><P><FONT COLOR = "0000FF"><U><U><A HREF="#On-Page_Link_P6759_1">Author s Abstract</A></U><SUB>1</SUB><a name="On-Page_Return_P6759_1"></A></U><FONT COLOR = "800080"><ol type="1"><li>The view that <a name="1"></a><A HREF="../../Notes/Notes_1/Notes_121.htm">modal</A><SUP>2</SUP> expressions can be successfully paraphrased by means of quantification over possible worlds is rejected on the grounds that such translations are either circular or inadequate. </li><li>It is argued instead that <a name="2"></a><A HREF="../../Notes/Notes_1/Notes_121.htm">modal</A><SUP>3</SUP> expressions function as  copula modifiers , specifying whether an object instantiates a property in the  necessary mode or in the  contingent mode . </li><li>The chapter concludes with a brief examination of some metaphysical issues about <a name="3"></a><A HREF="../../Notes/Notes_1/Notes_121.htm">modality</A><SUP>4</SUP>, including whether it constitutes a sui generis ontological category and whether it is causally efficacious. </li></ol> </FONT><BR><U><U><A HREF="#On-Page_Link_P6759_5">Author s Abstract</A></U><SUB>5</SUB><a name="On-Page_Return_P6759_5"></A></U><FONT COLOR = "800080"><ol type="1"><li>Next comes <a name="4"></a><A HREF="../../Notes/Notes_1/Notes_121.htm">modality</A><SUP>6</SUP>. Recent tradition has assimilated <a name="5"></a><A HREF="../../Notes/Notes_1/Notes_121.htm">modal</A><SUP>7</SUP> expressions to quantifier expressions: "possibly" and "necessarily" are treated as existential and universal quantifiers, respectively. </li><li>From my point of view in this chapter, it matters little what these quantifiers range over - my objection is to the semantic proposal itself, not to its metaphysical interpretation. But of course it is <em>worlds</em> that are held to be the domain of quantification, either as robust realities or as linguistic constructions. </li><li>I argue that such a quantificational translation cannot work because it must employ the world "possible" within the putative translation, and hence cannot account for every use of <a name="6"></a><A HREF="../../Notes/Notes_1/Notes_121.htm">modal</A><SUP>8</SUP> expressions. This is not to say that there are no possible worlds or that they cannot be usefully invoked in semantics and metaphysics; it is simply to say that, as an account of the meaning of <a name="7"></a><A HREF="../../Notes/Notes_1/Notes_121.htm">modal</A><SUP>9</SUP> words, the theory cannot deliver the goods, since it cannot account for all occurrences of such words. </li><li>As an alternative, I amend the well-known predicate modifier treatment, suggesting that <a name="8"></a><A HREF="../../Notes/Notes_1/Notes_121.htm">modal</A><SUP>10</SUP> expressions are best seen as operating on the copula and not on the copulated predicate. Intuitively, when we say that Socrates is necessarily a man we are saying that Socrates instantiates manhood <em>in the mode of necessity</em> - not that he instantiates the <em><a name="9"></a><A HREF="../../Notes/Notes_1/Notes_121.htm">modal</A><SUP>11</SUP> property</em> of necessary manhood. This is a subtle difference, but a significant one. </li><li>This copula modifier theory can account for all uses of <a name="10"></a><A HREF="../../Notes/Notes_1/Notes_121.htm">modal</A><SUP>12</SUP> expressions, even <em>de dicto</em> uses, I claim, so that it does not have the same kind of problem as the quantifier treatment. It does, however, require us to enlarge our accepted types of logical form (there are no copula modifiers in predicate logic). </li></ol> </FONT><hr><FONT COLOR = "0000FF"><B>Comment: </B><BR><BR>Photocopy filed in <a name="12"></a>"<A HREF = "../../BookSummaries/BookSummary_05/BookPaperAbstracts/BookPaperAbstracts_5970.htm">Various - Papers on Identity Boxes: Vol 10 (M1: Ma-Mc)</A>".<BR><BR><HR><BR><U><B>In-Page Footnotes</U></B><a name="On-Page_Link_P6759_1"></A><BR><BR><U><A HREF="#On-Page_Return_P6759_1"><B>Footnote 1</B></A></U>: Taken from Oxford Scholarship Online. <a name="On-Page_Link_P6759_5"></A><BR><BR><U><A HREF="#On-Page_Return_P6759_5"><B>Footnote 5</B></A></U>: Taken from <a name="11"></a>"<A HREF = "../../Abstracts/Abstract_20/Abstract_20500.htm">McGinn (Colin) - Prcis of 'Logical Properties: Identity, Existence, Prediction, Necessity, Truth'</A>". <BR><BR><FONT COLOR = "0000FF"><HR></P><a name="ColourConventions"></a><p><b>Text Colour Conventions (see <A HREF="../../Notes/Notes_10/Notes_1025.htm">disclaimer</a>)</b></p><OL TYPE="1"><LI><FONT COLOR = "0000FF">Blue</FONT>: Text by me; &copy; Theo Todman, 2018</li><LI><FONT COLOR = "800080">Mauve</FONT>: Text by correspondent(s) or other author(s); &copy; the author(s)</li></OL> <BR><HR><BR><CENTER> <TABLE class = "Bridge" WIDTH=950> <TR><TD WIDTH="30%">&copy; Theo Todman, June 2007 - August 2018.</TD> <TD WIDTH="40%">Please address any comments on this page to <A HREF="mailto:theo@theotodman.com">theo@theotodman.com</A>.</TD> <TD WIDTH="30%">File output: <time datetime="2018-08-03T00:11" pubdate>03/08/2018 00:11:29</time> <br><A HREF="../../Notes/Notes_10/Notes_1010.htm">Website Maintenance Dashboard</A></TD></TR> <TD WIDTH="30%"><A HREF="#Top">Return to Top of this Page</A></TD> <TD WIDTH="40%"><A HREF="../../Notes/Notes_11/Notes_1140.htm">Return to Theo Todman's Philosophy Page</A></TD> <TD WIDTH="30%"><A HREF="../../index.htm">Return to Theo Todman's Home Page</A></TD> </TR></TABLE></CENTER><HR> </BODY> </HTML>