<!DOCTYPE html><HTML lang="en"> <head><meta charset="utf-8"> <title>Routley (Richard) - Existence and identity in quantified modal logics (Theo Todman's Book Collection - Paper Abstracts) </title> <link href="../../TheosStyle.css" rel="stylesheet" type="text/css"><link rel="shortcut icon" href="../../TT_ICO.png" /></head> <BODY> <CENTER> <div id="header"><HR><h1>Theo Todman's Web Page - Paper Abstracts</h1><HR></div><A name="Top"></A> <TABLE class = "Bridge" WIDTH=950> <tr><th><A HREF = "../../PaperSummaries/PaperSummary_11/PaperSummary_11347.htm">Existence and identity in quantified modal logics</A></th></tr> <tr><th><A HREF = "../../Authors/R/Author_Routley (Richard).htm">Routley (Richard)</a></th></tr> <tr><th>Source: Notre Dame J. Formal Logic 10, no. 2 (1969), 113 149</th></tr> <tr><th>Paper - Abstract</th></tr> </TABLE> </CENTER> <P><CENTER><TABLE class = "Bridge" WIDTH=200><tr><td><A HREF = "../../PaperSummaries/PaperSummary_11/PaperSummary_11347.htm">Paper Summary</A></td></tr></TABLE></CENTER></P> <hr><P><FONT COLOR = "0000FF"><U>Philosophers Index Abstract</U><FONT COLOR = "800080"><ol type="1">A way of overcoming objections to the development of a combined quantification and <a name="1"></a><A HREF="../../Notes/Notes_1/Notes_121.htm">modal logic</A><SUP>1</SUP> based on S5, and more generally objections to quantified intensional logics, is elaborated. Problematic theses are appropriately qualified by basing the theory on an existence-neutral logic, with 'exists' as a primitive predicate. Problems of identity are resolved through a distinction between extensional and strict identity. Rival resolutions of the <a name="2"></a><A HREF="../../Notes/Notes_1/Notes_121.htm">modal</A><SUP>2</SUP> paradoxes are criticised, and quine's objections to quantifying into <a name="3"></a><A HREF="../../Notes/Notes_1/Notes_121.htm">modal</A><SUP>3</SUP> contexts are shown to be unwarranted. A semantical analysis of systems used is provided, and some presuppositions of this analysis discussed. S5 is defended as providing the correct account of logical necessity. Kneale's and von Wright's attempts to eliminate problematic "de dicto" <a name="4"></a><A HREF="../../Notes/Notes_1/Notes_121.htm">modalities</A><SUP>4</SUP> are criticised.</ol></FONT><FONT COLOR = "0000FF"><HR></P><a name="ColourConventions"></a><p><b>Text Colour Conventions (see <A HREF="../../Notes/Notes_10/Notes_1025.htm">disclaimer</a>)</b></p><OL TYPE="1"><LI><FONT COLOR = "0000FF">Blue</FONT>: Text by me; &copy; Theo Todman, 2018</li><LI><FONT COLOR = "800080">Mauve</FONT>: Text by correspondent(s) or other author(s); &copy; the author(s)</li></OL> <BR><HR><BR><CENTER> <TABLE class = "Bridge" WIDTH=950> <TR><TD WIDTH="30%">&copy; Theo Todman, June 2007 - August 2018.</TD> <TD WIDTH="40%">Please address any comments on this page to <A HREF="mailto:theo@theotodman.com">theo@theotodman.com</A>.</TD> <TD WIDTH="30%">File output: <time datetime="2018-08-03T00:13" pubdate>03/08/2018 00:13:17</time> <br><A HREF="../../Notes/Notes_10/Notes_1010.htm">Website Maintenance Dashboard</A></TD></TR> <TD WIDTH="30%"><A HREF="#Top">Return to Top of this Page</A></TD> <TD WIDTH="40%"><A HREF="../../Notes/Notes_11/Notes_1140.htm">Return to Theo Todman's Philosophy Page</A></TD> <TD WIDTH="30%"><A HREF="../../index.htm">Return to Theo Todman's Home Page</A></TD> </TR></TABLE></CENTER><HR> </BODY> </HTML>