The Feynman Lectures on Physics - Vol I |
---|

Feynman (Richard), Leighton (Robert B.) & Sands (Matthew) |

Source: Feynman (Richard), Leighton & Sands - The Feynman Lectures on Physics - Vol I (Mainly Mechanics, Radiation & Heat) |

Paper - Abstract |

Paper Statistics | Colour-Conventions | Disclaimer |

__Contents__

- Atoms in Motion
- Introduction 1-1
- Matter is made of atoms 1-2
- Atomic processes 1-5
- Chemical reactions 1-6

- Basic Physics
- Introduction 2-1
- Physics before 1920 2-3
- Quantum physics 2-6
- Nuclei and particles 2-8

- The Relation of Physics to Other Sciences
- Introduction 3-1
- Chemistry 3-1
- Biology 3-2
- Astronomy 3-6
- Geology 3-7
- Psychology 3-8
- How did it get that way? 3-9

- Conservation of Energy
- What is energy? 4-1
- Gravitational potential energy 4-2
- Kinetic energy 4-5
- Other forms of energy 4-6

- Time and Distance
- Motion 5-1
- Time 5-1
- Short times 5-2
- Long times 5-3
- Units and standards of time 5-5
- Large distances 5-5
- Short distances 5-8

- Probability
- Chance and likelihood 6-1
- Fluctuations 6-3
- The random walk 6-5
- A probability distribution 6-7
- The uncertainty principle 6-10

- The Theory of Gravitation
- Planetary motions 7-1
- Kepler's laws 7-1
- Development of dynamics 7-2
- Newton's law of gravitation 7-3
- Universal gravitation 7-5
- Cavendish's experiment 7-9
- What is gravity? 7-9
- Gravity and relativity 7-11

- Motion
- Description of motion 8-1
- Speed 8-2
- Speed as a derivative 8-5
- Distance as an integral 8-7
- Acceleration 8-8

- Newton's Laws of Dynamics
- Momentum and force 9-1
- Speed and velocity 9-2
- Components of velocity, acceleration, and force 9-3
- What is the force? 9-3
- Meaning of the dynamical equations 9-4
- Numerical solution of the equations 9-5
- Planetary motions 9-6

- Conservation of Momentum
- Newton's Third Law 10-1
- Conservation of momentum 10-2
- Momentum is conserved! 10-5
- Momentum and energy 10-7
- Relativistic momentum 10-8

- Vectors
- Symmetry in physics 11-1
- Translations 11-1
- Rotations 11-3
- Vectors 11-5
- Vector algebra 11-6
- Newton's laws in vector notation 11-7
- Scalar product of vectors 11-8

- Characteristics of Force
- What is a force? 12-1
- Friction 12-3
- Molecular forces 12-6
- Fundamental forces. Fields 12-7
- Pseudo forces 12-10
- Nuclear forces 12-12

- Work and Potential Energy (A)
- Energy of a falling body 13-1
- Work done by gravity 13-3
- Summation of energy 13-6
- Gravitational field of large objects 13-8

- Work and Potential Energy (conclusion)
- Work 14-1
- Constrained motion 14-3
- Conservative forces 14-3
- Non-conservative forces 14-6
- Potentials and fields 14-7

- The Special Theory of Relativity
- The principle of relativity 15-1
- The Lorentz transformation 15-3
- The Michelson-Morley experiment 15-3
- Transformation of time 15-5
- The Lorentz contraction 15-7
- Simultaneity 15-7
- Four-vectors 15-8
- Relativistic dynamics 15-9
- Equivalence of mass and energy 15-10

- Relativistic Energy and Momentum
- Relativity and the philosophers 16-1
- The twin paradox 16-3
- Transformation of velocities 16-4
- Relativistic mass 16-6
- Relativistic energy 16-8

- Space-Time
- The geometry of space-time 17-1
- Space-time intervals 17-2
- Past, present, and future 17-4
- More about four-vectors 17-5
- Four-vector algebra 17-7

- Rotation in Two Dimensions
- The center of mass 18-1
- Rotation of a rigid body 18-2
- Angular momentum 18-5
- Conservation of angular momentum 18-6

- Center of Mass; Moment of Inertia
- Properties of the center of mass 19-1
- Locating the center of mass 19-4
- Finding the moment of inertia 19-5
- Rotational kinetic energy 19-7

- Rotation in Space
- Torques in three dimensions 20-1
- The rotation equations using cross products 20-4
- The gyroscope 20-5
- Angular momentum of a solid body 20-8

- The Harmonic Oscillator
- Linear differential equations 21-1
- The harmonic oscillator 21-1
- Harmonic motion and circular motion 21-4
- Initial conditions 21-4
- Forced oscillations 21-5

- Algebra
- Addition and multiplication 22-1
- The inverse operations 22-2
- Abstraction and generalization 22-3
- Approximating irrational numbers 22-4
- Complex numbers 22-7
- Imaginary exponents 22-9

- Resonance
- Complex numbers and harmonic motion 23-1
- The forced oscillator with damping 23-3
- Electrical resonance 23-5
- Resonance in nature 23-7

- Transients
- The energy of an oscillator 24-1
- Damped oscillations 24-2
- Electrical transients 24-5

- Linear Systems and Review
- Linear differential equations 25-1
- Superposition of solutions 25-2
- Oscillations in linear systems 25-5
- Analogs in physics 25-6
- Series and parallel impedances 25-8

- Optics: The Principle of Least Time
- Light 26-1
- Reflection and refraction 26-2
- Fermat's principle of least time 26-3
- Applications of Fermat's principle 26-5
- A more precise statement of Fermat's principle 26-7
- How it works 26-8

- Geometrical Optics
- Introduction 27-1
- The focal length of a spherical surface 27-1
- The focal length of a lens 27-4
- Magnification 27-5
- Compound lenses 27-6
- Aberrations 27-7
- Resolving power 27-7

- Electromagnetic Radiation
- Electromagnetism 28-1
- Radiation 28-3
- The dipole radiator 28-5
- Interference 28-6

- Interference
- Electromagnetic waves 29-1
- Energy of radiation 29-2
- Sinusoidal waves 29-2
- Two dipole radiators 29-3
- The mathematics of interference 29-5

- Diffraction
- The resultant amplitude due to n equal oscillators 30-1
- The diffraction grating 30-3
- Resolving power of a grating 30-5
- The parabolic antenna 30-6
- Colored films; crystals 30-7
- Diffraction by opaque screens 30-8
- The field of a plane of oscillating charges 30-10

- The Origin of the Refractive Index
- The index of refraction 31-1
- The field due to the material 31-4
- Dispersion 31-6
- Absorption 31-8
- The energy carried by an electric wave 31-9
- Diffraction of light by a screen 31-10

- Radiation Damping. Light Scattering
- Radiation resistance 32-1
- The rate of radiation of energy 32-2
- Radiation damping 32-3
- Independent sources 32-5
- Scattering of light 32-6

- Polarization
- The electric vector of light 33-1
- Polarization of scattered light 33-3
- Birefringence 33-3
- Polarizers 33-5
- Optical activity 33-6
- The intensity of reflected light 33-7
- Anomalous refraction 33-9

- Relativistic Effects in Radiation
- Moving sources 34-1
- Finding the "apparent" motion 34-2
- Synchrotron radiation 34-3
- Cosmic synchrotron radiation 34-6
- Bremsstrahlung 34-6
- The Doppler effect 34-7
- The ω, k four-vector 34-9
- Aberration 34-10
- The momentum of light 34-10

- Color Vision
- The human eye 35-1
- Color depends on intensity 35-2
- Measuring the color sensation 35-3
- The chromaticity diagram 35-6
- The mechanism of color vision 35-7
- Physiochemistry of color vision 35-9

- Mechanisms of Seeing
- The sensation of color 36-1
- The physiology of the eye 36-3
- The rod cells 36-6
- The compound (insect) eye 36-6
- Other eyes 36-9
- Neurology of vision 36-9

- Quantum Behavior
- Atomic mechanics 37-1
- An experiment with bullets 37-2
- An experiment with waves 37-3
- An experiment with electrons 37-4
- The interference of electron waves 37-5
- Watching the electrons 37-7
- First principles of quantum mechanics 37-10
- The uncertainty principle 37-11

- The Relation of Wave and Particle Viewpoints
- Probability wave amplitudes 38-1
- Measurement of position and momentum 38-2
- Crystal diffraction 38-4
- The size of an atom 38-5
- Energy levels 38-7
- Philosophical implications 38-8

- The Kinetic Theory of Gases
- Properties of matter 39-1
- The pressure of a gas 39-2
- Compressibility of radiation 39-6
- Temperature and kinetic energy 39-6
- The ideal gas law 39-10

- The Principles of Statistical Mechanics
- The exponential atmosphere 40-1
- The Boltzmann law 40-2
- Evaporation of a liquid 40-3
- The distribution of molecular speeds 40-4
- The specific heats of gases 40-7
- The failure of classical physics 40-8

- The Brownian Movement
- Equipartition of energy 41-1
- Thermal equilibrium of radiation 41-3
- Equipartition and the quantum oscillator 41-6
- The random walk 41-8

- Applications of Kinetic Theory
- Evaporation 42-1
- Thermionic emission 42-4
- Thermal ionization 42-5
- Chemical kinetics 42-7
- Einstein's laws of radiation 42-8

- Diffusion
- Collisions between molecules 43-1
- The mean free path 43-3
- The drift speed 43-4
- Ionic conductivity 43-6
- Molecular diffusion 43-7
- Thermal conductivity 43-9

- The Laws of Thermodynamics
- Heat engines; the first law 44-1
- The second law 44-3
- Reversible engines 44-4
- The efficiency of an ideal engine 44-7
- The thermodynamic temperature 44-9
- Entropy 44-10

- Illustrations of Thermodynamics
- Internal energy 45-1
- Applications 45-4
- The Clausius-Clapeyron equation 45-6

- Ratchet and Pawl
- How a ratchet works 46-1
- The ratchet as an engine 46-2
- Reversibility in mechanics 46-4
- Irreversibility 46-5
- Order and entropy 46-7

- Sound. The Wave Equation
- Waves 47-1
- The propagation of sound 47-3
- The wave equation 47-4
- Solutions of the wave equation 47-6
- The speed of sound 47-7

- Beats
- Adding two waves 48-1
- Beat notes and modulation 48-3
- Side bands 48-4
- Localized wave trains 48-5
- Probability amplitudes for particles 48-7
- Waves in three dimensions 48-9
- Normal modes 48-10

- Modes
- The reflection of waves 49-1
- Confined waves, with natural frequencies 49-2
- Modes in two dimensions 49-3
- Coupled pendulums 49-6
- Linear systems 49-7

- Harmonics
- Musical tones 50-1
- The Fourier series 50-2
- Quality and consonance 50-3
- The Fourier coefficients 50-5
- The energy theorem 50-7
- Nonlinear responses 50-8

- Waves
- Bow waves 51-1
- Shock waves 51-2
- Waves in solids 51-4
- Surface waves 51-7

- Symmetry in Physical Laws
- Symmetry operations 52-1
- Symmetry in space and time 52-1
- Symmetry and conservation laws 52-3
- Mirror reflections 52-4
- Polar and axial vectors 52-6
- Which hand is right? 52-8
- Parity is not conserved! 52-8
- Antimatter 52-10
- Broken symmetries 52-11

**Text Colour Conventions (see disclaimer)**

- Blue: Text by me; © Theo Todman, 2020
- Mauve: Text by correspondent(s) or other author(s); © the author(s)

© Theo Todman, June 2007 - Jan 2020. | Please address any comments on this page to theo@theotodman.com. | File output: Website Maintenance Dashboard |

Return to Top of this Page | Return to Theo Todman's Philosophy Page | Return to Theo Todman's Home Page |