Counting and Indeterminate Identity
Pinillos (N. Ángel)
Source: Mind, Vol. 112, No. 445 (Jan., 2003), pp. 35-50
Paper - Abstract

Paper StatisticsBooks / Papers Citing this PaperNotes Citing this PaperColour-ConventionsDisclaimer

Author’s Abstract

  1. Suppose that we repair a wooden ship by replacing its planks one by one with new ones while at the same time reconstructing it using the discarded planks. Some defenders of vague or indeterminate identity1 claim that:
    • (1) although the reconstructed ship is distinct from the repaired ship, it is indeterminate whether the original ship is the reconstructed ship and indeterminate whether it is the repaired ship, and
    • (2) the indeterminacy is due to the world and not just an imprecision in the language used to describe the situation.
  2. I argue that such a description is incoherent. The argument has two features.
    • First, it differs in spirit from Gareth Evans's more general famous proof against the possibility of indeterminate identity2. This is because I rely on facts regarding counting and sets.
    • Second, I focus on Terence Parsons's recent defence of indeterminate identity3. I argue that his attempts at making sense of counting objects involving indeterminate identities fail on technical and philosophical grounds.


See "Heck (Richard) - Is Indeterminate Identity Coherent" for a response.

Text Colour Conventions (see disclaimer)

  1. Blue: Text by me; © Theo Todman, 2020
  2. Mauve: Text by correspondent(s) or other author(s); © the author(s)

© Theo Todman, June 2007 - Oct 2020. Please address any comments on this page to File output:
Website Maintenance Dashboard
Return to Top of this Page Return to Theo Todman's Philosophy Page Return to Theo Todman's Home Page