<!DOCTYPE html><HTML lang="en"> <head><meta charset="utf-8"> <title>Smith (Martin) - Intuitionistic Probability and the Bayesian Objection to Dogmatism (Theo Todman's Book Collection - Paper Abstracts) </title> <link href="../../TheosStyle.css" rel="stylesheet" type="text/css"><link rel="shortcut icon" href="../../TT_ICO.png" /></head> <BODY> <CENTER> <div id="header"><HR><h1>Theo Todman's Web Page - Paper Abstracts</h1><HR></div><A name="Top"></A> <TABLE class = "Bridge" WIDTH=950> <tr><th><A HREF = "../../PaperSummaries/PaperSummary_22/PaperSummary_22863.htm">Intuitionistic Probability and the Bayesian Objection to Dogmatism</A></th></tr> <tr><th><A HREF = "../../Authors/S/Author_Smith (Martin).htm">Smith (Martin)</a></th></tr> <tr><th>Source: Synthese v194(10), 2017</th></tr> <tr><th>Paper - Abstract</th></tr> </TABLE> </CENTER> <P><CENTER><TABLE class = "Bridge" WIDTH=400><tr><td><A HREF = "../../PaperSummaries/PaperSummary_22/PaperSummary_22863.htm">Paper Summary</A></td><td><A HREF="#ColourConventions">Text Colour-Conventions</a></td></tr></TABLE></CENTER></P> <hr><P><FONT COLOR = "0000FF"><u>Author s Abstract</u><FONT COLOR = "800080"><ol type="1"><li>Given a few assumptions, the probability of a conjunction is raised, and the probability of its negation is lowered, by conditionalising upon one of the conjuncts. This simple result appears to bring Bayesian confirmation theory into tension with the prominent dogmatist view of perceptual justification  a tension often portrayed as a kind of  Bayesian objection to dogmatism. </li><li>In a recent paper, David Jehle and <a name="1"></a><A HREF = "../../Authors/W/Author_Weatherson (Brian).htm">Brian Weatherson</A> observe that, while this crucial result holds within classical probability theory, it fails within intuitionistic probability theory. They conclude that the dogmatist who is willing to take intuitionistic logic seriously can make a convincing reply to the Bayesian objection. </li><li>In this paper, I argue that this conclusion is premature  the Bayesian objection can survive the transition from classical to intuitionistic probability, albeit in a slightly altered form. I shall conclude with some general thoughts about what the Bayesian objection to dogmatism does and doesn t show. </li></ol></FONT><hr><FONT COLOR = "0000FF"><B>Comment: </B><BR><BR>See <a name="W5765W"></a><A HREF = "https://philpapers.org/archive/SMIIPA-5.pdf" TARGET = "_top">Link</A>.<BR><FONT COLOR = "0000FF"><HR></P><a name="ColourConventions"></a><p><b>Text Colour Conventions (see <A HREF="../../Notes/Notes_10/Notes_1025.htm">disclaimer</a>)</b></p><OL TYPE="1"><LI><FONT COLOR = "0000FF">Blue</FONT>: Text by me; &copy; Theo Todman, 2018</li><LI><FONT COLOR = "800080">Mauve</FONT>: Text by correspondent(s) or other author(s); &copy; the author(s)</li></OL> <BR><HR><BR><CENTER> <TABLE class = "Bridge" WIDTH=950> <TR><TD WIDTH="30%">&copy; Theo Todman, June 2007 - August 2018.</TD> <TD WIDTH="40%">Please address any comments on this page to <A HREF="mailto:theo@theotodman.com">theo@theotodman.com</A>.</TD> <TD WIDTH="30%">File output: <time datetime="2018-08-02T09:59" pubdate>02/08/2018 09:59:21</time> <br><A HREF="../../Notes/Notes_10/Notes_1010.htm">Website Maintenance Dashboard</A></TD></TR> <TD WIDTH="30%"><A HREF="#Top">Return to Top of this Page</A></TD> <TD WIDTH="40%"><A HREF="../../Notes/Notes_11/Notes_1140.htm">Return to Theo Todman's Philosophy Page</A></TD> <TD WIDTH="30%"><A HREF="../../index.htm">Return to Theo Todman's Home Page</A></TD> </TR></TABLE></CENTER><HR> </BODY> </HTML>